RRBRALIAALIARNRWVA
AANT4AATAN 1R/ ALLN)

| College of Engineering

INTELLIGENT SYSTEMS (CSE-303-F)
Section A

Alpha Beta Search

Artificial Intelligence

Alpha Beta Search

Partl: The idea of Alpha Beta Search
Part lI: The details of Alpha Beta Search
Part lll: Results of using Alpha Beta

Reminder

We consider 2 player perfect information games
Two players, Min and Max

Leaf nodes given definite score

backing up by MiniMax defines score for all nodes

Usually can’t search whole tree
Use static evaluation function instead

MiniMax hopelessly inefficient

What’s wrong with MiniMax

Minimax is horrendously Scﬁfé‘xzz

inefficient Best move = Left

If we go to depth d,

branching rate b, . .
we must explore b9 nodes

but many nodes are wasted

We needlessly calculate the Max

exact score at every node s <3| [soe 2| s+

but at many nodes we don’t
need to know exact score

e.g. outlined nodes are
Irrelevant

The Solution

Start propagating costs as soon as leaf nodes are
generated

Don’t explore nodes which cannot affect the choice
of move

|.e. don’t explore those that we can prove are no better
than the best found so far

This Is the idea behind alpha-beta search

Alpha-Beta search

Alpha-Beta = a—f3

Uses same insight as branch and bound

When we cannot do better than the best so far
we can cut off search in this part of the tree

More complicated because of opposite score
functions

To implement this we will manipulate alpha and beta
values, and store them on internal nodes in the
search tree

Alpha and Beta values

At a Max node we will store an alpha value
the alpha value is lower bound on the exact minimax score
the true value might be > o
If we know Min can choose moves with score < a.

then Min will never choose to let Max go to a node
where the score will be a or more

At a Min node, (3 value Is similar but opposite
Alpha-Beta search uses these values to cut search

Alpha Beta in Action

Why can we cut off search? Max

score = 2

Beta = 1 < alpha = 2 where Best move - Lef
the alpha value is at an l

ancestor node

At the ancestor node, Max
had a choice to get a score | | |

M M M
Of at |eaSt 2 (ma.ybe mOre) scor:;lX:B scor:X:Z SCOI‘SX:l

Max Is not going to move
right to let Min guarantee a
score of 1 (maybe less)

Alpha and Beta values

Maox node has o value
the alpha value Is lower bound on the exact minimax score
with best play M ax can guarantee scoring at least o

Min node has 3 value
the beta value is upper bound on the exact minimax score
with best play Min can guarantee scoring no more than f3

At Max node, If an ancestor Min node has 3 < a
Min’s best play must never let Max move to this node
therefore this node is irrelevant
If B = o, Min can do as well without letting Max get here
SO again we need not continue

Alpha-Beta Pruning Rule

Two key points:
alpha values can never decrease
beta values can never increase

Search can be discontinued at a node If:
It is a Max node and
the alpha value Is > the beta of any Min ancestor
this is beta cutoff
Or it is a Min node and
the beta value is < the alpha of any Max ancestor
this is alpha cutoff

10

Calculating Alpha-Beta values

Alpha-Beta calculations are similar to Minimax
but the pruning rule cuts down search

Use concept of ‘final backed up value’ of node
this might be the minimax value
or it might be an approximation where search cut off
less than the true minimax value at a Max node
more than the true minimax value at a Min node
In either case, we don’t need to know the true value

11

Final backed up value

Like MiniMax

At a Max node:
the final backed up value is equal to the:
largest final backed up value of its successors
this can be all successors (if no beta cutoff)
or all successors used until beta cutoff occurs

At a Min node
the smallest final backed up value is equal to the
smallest final backed up value of its successors
min of all successors until alpha cutoff occurs

12

Calculating alpha values

At a Max node

after we obtain the final backed up value of the first child
we can set o of the node to this value

when we get the final backed up value of the second child
we can increase a if the new value is larger

when we have the final child, or if beta cutoff occurs
the stored a becomes the final backed up value
only then can we set the (3 of the parent Min node
only then can we guarantee that 3 will not increase

Note the difference

setting alpha value of current node as we go along

VS. propagating value up only when it is finalised "

Calculating beta values

At a Min node

after we obtain the final backed up value of the first child
we can set 3 of the node to this value

when we get the final backed up value of the second child
we can decrease J if the new value is smaller

when we have the final child, or if alpha cutoff occurs
the stored 3 becomes the final backed up value
only then can we set the o of the parent Max node
only then can we guarantee that a will not decrease

Note the difference

setting beta value of current node as we go along

VS. propagating value up only when it is finalised ”

Move ordering Heuristics

Variable ordering heuristics irrelevant
value ordering heuristics = move ordering heuristic

The optimal move ordering heuristic for alpha-beta ..
... Is to consider the best move first

|.e. test the move which will turn out to have best final
backed up value

of course this is impossible in practice
The pessimal move ordering heuristic ...

... 1S to consider the worst move first
|.e. test move which will have worst final backed up value

15

Move ordering Heuristics

In practice we need quick and dirty heuristics
will neither be optimal nor pessimal

E.g. order moves by static evaluation function
If it's reasonable, most promising likely to give good score
should be nearer optimal than random

If static evaluation function is expensive
need even quicker heuristics

In practice move ordering heuristics vital

16

Theoretical Results

With pessimal move ordering,
alpha beta makes no reduction in search cost
With optimal move ordering

alpha beta cuts the amount of search to the square root
l.e. From bdto Vbd = hd/2
Equivalently, we can search to twice the depth

at the same cost

With heuristics, performance is in between

alpha beta search vital to successful computer play
In 2 player perfect information games

17

Summary and Next Lecture

Game trees are similar to search trees
but have opposing players

Minimax characterises the value of nodes in the tree
but is horribly inefficient

Use static evaluation when tree too big

Alpha-beta can cut off nodes that need not be
searched
can allow search up to twice as deep as minimax

Next Time:

Chinook, world champion Checkers player
18

