

INTELLIGENT SYSTEMS (CSE-303-F)

Section A

Alpha Beta Search

Artificial Intelligence

Part I : The idea of Alpha Beta Search

Part II: The details of Alpha Beta Search

Part III: Results of using Alpha Beta

Alpha Beta Search

3

Reminder

z We consider 2 player perfect information games

z Two players, Min and Mx

z Leaf nodes given definite score

z backing up by MiniMax defines score for all nodes

z Usually can’t search whole tree

y Use static evaluation function instead

z MiniMax hopelessly inefficient

4

What’s wrong with MiniMax

z Minimax is horrendously

inefficient

z If we go to depth d,

branching rate b,

y we must explore bd nodes

z but many nodes are wasted

z We needlessly calculate the

exact score at every node

z but at many nodes we don’t

need to know exact score

z e.g. outlined nodes are

irrelevant

Max

score = 3

Max

score = 2

Min

score = 2

Best move = Right

Max

score = 1
Max

score = ?

Max

score = ?

Min

score = ? < 2

Best move = ?

Max

score = 2

Best move = Left

5

The Solution

z Start propagating costs as soon as leaf nodes are

generated

z Don’t explore nodes which cannot affect the choice

of move

y I.e. don’t explore those that we can prove are no better

than the best found so far

z This is the idea behind alpha-beta search

6

Alpha-Beta search

z Alpha-Beta = 

z Uses same insight as branch and bound

z When we cannot do better than the best so far

y we can cut off search in this part of the tree

z More complicated because of opposite score

functions

z To implement this we will manipulate alpha and beta

values, and store them on internal nodes in the

search tree

7

Alpha and Beta values

z At a Mx node we will store an alpha value

y the alpha value is lower bound on the exact minimax score

y the true value might be  

y if we know Min can choose moves with score < 

x then Min will never choose to let Max go to a node

where the score will be  or more

z At a Min node,  value is similar but opposite

z Alpha-Beta search uses these values to cut search

8

Alpha Beta in Action

z Why can we cut off search?

z Beta = 1 < alpha = 2 where

the alpha value is at an

ancestor node

z At the ancestor node, Max

had a choice to get a score

of at least 2 (maybe more)

z Max is not going to move

right to let Min guarantee a

score of 1 (maybe less)

Max

score = 3

Max

score = 2

Min

score = 2

Best move = Right

beta = 2

Max

score = 1
Max

score = ?

Max

score = ?

Min

score = ? < 2

Best move = ?

beta = 1

Max

score = 2

Best move = Left

alpha = 2

9

Alpha and Beta values

z Mx node has  value

y the alpha value is lower bound on the exact minimax score

y with best play M x can guarantee scoring at least 

z Min node has  value

y the beta value is upper bound on the exact minimax score

y with best play Min can guarantee scoring no more than 

z At Max node, if an ancestor Min node has  < 

y Min’s best play must never let Max move to this node

x therefore this node is irrelevant

y if  = , Min can do as well without letting Max get here

x so again we need not continue

10

Alpha-Beta Pruning Rule

z Two key points:

y alpha values can never decrease

y beta values can never increase

z Search can be discontinued at a node if:

y It is a Max node and

x the alpha value is  the beta of any Min ancestor

x this is beta cutoff

y Or it is a Min node and

x the beta value is  the alpha of any Max ancestor

x this is alpha cutoff

11

Calculating Alpha-Beta values

z Alpha-Beta calculations are similar to Minimax

y but the pruning rule cuts down search

z Use concept of ‘final backed up value’ of node

y this might be the minimax value

y or it might be an approximation where search cut off

x less than the true minimax value at a Max node

x more than the true minimax value at a Min node

x in either case, we don’t need to know the true value

12

Final backed up value

z Like MiniMax

z At a Max node:

y the final backed up value is equal to the:

x largest final backed up value of its successors

x this can be all successors (if no beta cutoff)

x or all successors used until beta cutoff occurs

z At a Min node

y the smallest final backed up value is equal to the

x smallest final backed up value of its successors

x min of all successors until alpha cutoff occurs

13

Calculating alpha values

z At a Mx node

y after we obtain the final backed up value of the first child

x we can set  of the node to this value

y when we get the final backed up value of the second child

x we can increase  if the new value is larger

y when we have the final child, or if beta cutoff occurs

x the stored  becomes the final backed up value

x only then can we set the  of the parent Min node

x only then can we guarantee that  will not increase

z Note the difference

y setting alpha value of current node as we go along

y vs. propagating value up only when it is finalised

14

Calculating beta values

z At a Min node

y after we obtain the final backed up value of the first child

x we can set  of the node to this value

y when we get the final backed up value of the second child

x we can decrease  if the new value is smaller

y when we have the final child, or if alpha cutoff occurs

x the stored  becomes the final backed up value

x only then can we set the  of the parent Max node

x only then can we guarantee that  will not decrease

z Note the difference

y setting beta value of current node as we go along

y vs. propagating value up only when it is finalised

15

Move ordering Heuristics

z Variable ordering heuristics irrelevant

z value ordering heuristics = move ordering heuristic

z The optimal move ordering heuristic for alpha-beta ..

y … is to consider the best move first

y I.e. test the move which will turn out to have best final

backed up value

y of course this is impossible in practice

z The pessimal move ordering heuristic …

y … is to consider the worst move first

y I.e. test move which will have worst final backed up value

16

Move ordering Heuristics

z In practice we need quick and dirty heuristics

z will neither be optimal nor pessimal

z E.g. order moves by static evaluation function

y if it’s reasonable, most promising likely to give good score

y should be nearer optimal than random

z If static evaluation function is expensive

y need even quicker heuristics

z In practice move ordering heuristics vital

17

Theoretical Results

z With pessimal move ordering,

y alpha beta makes no reduction in search cost

z With optimal move ordering

y alpha beta cuts the amount of search to the square root

y I.e. From bd to bd = bd/2

y Equivalently, we can search to twice the depth

x at the same cost

z With heuristics, performance is in between

z alpha beta search vital to successful computer play

in 2 player perfect information games

18

Summary and Next Lecture

z Game trees are similar to search trees

y but have opposing players

z Minimax characterises the value of nodes in the tree

y but is horribly inefficient

z Use static evaluation when tree too big

z Alpha-beta can cut off nodes that need not be

searched

y can allow search up to twice as deep as minimax

z Next Time:

y Chinook, world champion Checkers player

