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Part I : The idea of Alpha  Beta Search 

Part II:  The details of Alpha Beta Search 

Part III:  Results of using Alpha Beta 
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Reminder 

z We consider 2 player perfect information games 

z Two players, Min and Mx 

z Leaf nodes given definite score 

z backing up by MiniMax defines score for all nodes 

z Usually can’t search whole tree 

y Use static evaluation function instead 

z MiniMax hopelessly inefficient 
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What’s wrong with MiniMax 

z Minimax is horrendously 

inefficient 

z If we go to depth d, 

branching rate b, 

y we must explore bd nodes 

z but many nodes are wasted 

z We needlessly calculate the 

exact score at every node 

z but at many nodes we don’t 

need to know exact score 

z e.g. outlined nodes are 

irrelevant 
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The Solution   

z Start propagating costs as soon as leaf nodes are 

generated 

z Don’t explore nodes which cannot affect the choice 

of move 

y I.e. don’t explore those that we can prove are no better 

than the best found so far 

z This is the idea behind alpha-beta search 
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Alpha-Beta search 

z Alpha-Beta =   

z Uses same insight as branch and bound 

z When we cannot do better than the best so far 

y we can cut off search in this part of the tree 

z More complicated because of opposite score 

functions 

z To implement this we will manipulate alpha and beta 

values, and store them on internal nodes in the 

search tree 
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Alpha and Beta values 

z At a Mx node we will store an alpha value 

y the alpha value is lower bound on the exact minimax score 

y the true value might be   

y if we know Min can choose moves with score <  

x then Min will never choose to let Max go to a node 

where the score will be  or more 

z At a Min node,  value is similar but opposite 

z Alpha-Beta search uses these values to cut search 
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Alpha Beta in Action 

z Why can we cut off search? 

z Beta = 1 < alpha = 2 where 

the alpha value is at an 

ancestor node 

z At the ancestor node, Max 

had a choice to get a score 

of at least 2 (maybe more) 

z Max is not going to move 

right to let Min guarantee a 

score of 1 (maybe less) 
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Alpha and Beta values 

z Mx node has  value 

y the alpha value is lower bound on the exact minimax score 

y with best play M x can guarantee scoring at least  

z Min node has  value 

y the beta value is upper bound on the exact minimax score 

y with best play Min can guarantee scoring no more than   

z At Max node, if an ancestor Min node has  <  

y Min’s best play must never let Max move to this node 

x therefore this node is irrelevant 

y if  = , Min can do as well without letting Max get here 

x so again we need not continue 
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Alpha-Beta Pruning Rule 

z Two key points: 

y alpha values can never decrease 

y beta values can never increase 

z Search can be discontinued at a node if: 

y It is a Max node and  

x the alpha value is  the beta of any Min ancestor 

x this is beta cutoff 

y Or it is a Min node and   

x the beta value is   the alpha of any Max ancestor  

x this is alpha cutoff 
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Calculating Alpha-Beta values 

z Alpha-Beta calculations are similar to Minimax 

y but the pruning rule cuts down search 

z Use concept of ‘final backed up value’ of node 

y this might be the minimax value  

y or it might be an approximation where search cut off 

x less than the true minimax value at a Max node 

x more than the true minimax value at a Min node 

x in either case, we don’t need to know the true value 
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Final backed up value 

z Like MiniMax 

z At a Max node: 

y the final backed up value is equal to the: 

x largest final backed up value of its successors 

x this can be all successors (if no beta cutoff) 

x or all successors used until beta cutoff occurs 

z At a Min node 

y the smallest final backed up value is equal to the  

x smallest final backed up value of its successors 

x min of all successors until alpha cutoff occurs 
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Calculating alpha values 

z At a Mx node 

y after we obtain the final backed up value of the first child 

x we can set  of the node to this value 

y when we get the final backed up value of the second child 

x we can increase  if the new value is larger  

y when we have the final child, or if beta cutoff occurs 

x the stored  becomes the final backed up value 

x only then can we set the  of the parent Min node 

x only then can we guarantee that  will not increase 

z Note the difference 

y setting alpha value of current node as we go along 

y vs. propagating value up only when it is finalised 
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Calculating beta values 

z At a Min node 

y after we obtain the final backed up value of the first child 

x we can set  of the node to this value 

y when we get the final backed up value of the second child 

x we can decrease  if the new value is smaller  

y when we have the final child, or if alpha cutoff occurs 

x the stored  becomes the final backed up value 

x only then can we set the  of the parent Max node 

x only then can we guarantee that  will not decrease 

z Note the difference 

y setting  beta value of current node as we go along 

y vs. propagating value up only when it is finalised 
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Move ordering Heuristics  

z Variable ordering heuristics irrelevant 

z value ordering heuristics = move ordering heuristic 

z The optimal move ordering heuristic for alpha-beta .. 

y … is to consider the best move first 

y I.e. test the move which will turn out to have best final 

backed up value 

y of course this is impossible in practice 

z The pessimal move ordering heuristic … 

y … is to consider the worst move first 

y I.e. test move which will have worst final backed up value 
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Move ordering Heuristics  

z In practice we need quick and dirty heuristics 

z will neither be optimal nor pessimal 

z E.g. order moves by static evaluation function 

y if it’s reasonable, most promising likely to give good score 

y should be nearer optimal than random 

z If static evaluation function is expensive 

y need even quicker heuristics 

z In practice move ordering heuristics vital 
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Theoretical Results 

z With pessimal move ordering, 

y alpha beta makes no reduction in search cost 

z With optimal move ordering 

y alpha beta cuts the amount of search to the square root 

y I.e.  From bd to bd = bd/2 

y Equivalently, we can search to twice the depth  

x at the same cost 

z With heuristics, performance is in between 

z alpha beta search vital to successful computer play 

in 2 player perfect information games 
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Summary and Next Lecture 

z Game trees are similar to search trees   

y but have opposing players 

z Minimax characterises the value of nodes in the tree 

y but is horribly inefficient 

z Use static evaluation when tree too big 

z Alpha-beta can cut off nodes that need not be 

searched 

y can allow search up to twice as deep as minimax 

z Next Time: 

y  Chinook, world champion Checkers player 

 


